

## Solid-phase extraction of dissolved organic matter (SPE-DOM) from river, estuarine and open ocean waters

200

200

### Gerhard Kattner<sup>1</sup>, Thorsten Dittmar<sup>2</sup>, Boris Koch<sup>1</sup>, and Norbert Hertkorn<sup>3</sup>

<sup>1</sup>Alfred Wegener Institute for Polar and Marine Research, Ecological Chemistry, Bremerhaven, Germany <sup>2</sup>Florida State University, Department of Oceanography, Tallahassee, USA <sup>3</sup>GSF-National Research Centre for Environment and Health, Institute of Ecological Chemistry, Neuherberg, Germany

### **Extraction methods**

Solid-phase extraction (SPE)

using XAD resins

using sequential combination of different XAD resins

using various sorbents

using pre-packed cartridges and discs with silica-C18 sorbent

- Ultrafiltration with a 1 kDa cutoff
- Combination of ultrafiltration and SPE
- Sequential combination of reversed osmosis and electrodialysis

### **Properties of the solid phase sorbents**

(according to manufacturer's (Varian) information)

| Sorbent | Structure                                                                                 | Pore<br>size | Retention properties                                                                |
|---------|-------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------|
| C18     | octadecyl bonded phase, silica-based                                                      | 60 Å         | retention of non-polar compounds                                                    |
| C18EWP  | octadecyl bonded phase, silica-based                                                      | 500 Å        | more efficient retention of large molecules, compared to C18                        |
| C18OH   | non-endcaped<br>octadecyl bonded<br>phase, silica-based,<br>with active silanol<br>groups | 150 Å        | enhanced retention of basic compounds, compared to C18                              |
| C8      | octyl bonded phase,<br>silica-based                                                       | 60 Å         | not as retentive for non-polar compounds as C18                                     |
| PPL     | styrene divinyl<br>benzene polymer                                                        | 150 Å        | retention of highly polar to non-polar<br>substances from large volumes of<br>water |
| ENV     | styrene divinyl<br>benzene polymer                                                        | 450 Å        | similar to PPL, larger pore size                                                    |

### Scheme for the isolation of SPE-DOM from seawater



DOM

\* choose size of PPL cartridge according to sample volume and DOC concentration: do no exceed 2 mmol DOC or 10 L sample per g adsorber

### **Extraction procedure abord**





### **PPL-Extracts**



### Extraction efficiencies for the isolation of SPE-DOM using different sorbents



### North Brazil shelf and coastal zone



# Composition of combined hydrolysable amino acids (North Sea)



### Percentage of D-amino acids (North Sea)



# Reversed-Phase High-Performance Liquid Chromatography (HPLC)

**Comparison of PPL and C18 sorbent** 

Fluorescence and DAD detection



Fluorescence detector: ex: 260 nm; em: 430 nm DAD contour plot : 200-400 nm (700 nm)

All other parameters are identical, e.g. amount of enriched sample, elution volume, injection volume

# Location of samples and DOC concentration



- A Apalachicola River and tributaries
- B Apalachicola salt marshes
- C North Brazil shelf and coastal zone
- D Gulf of Mexico deep sea
- E Weddell Sea (surface to bottom)





### **Extraction efficiency and C/N ratio of SPE-DOM (PPL)**



- A Apalachicola River and tributaries
- B Apalachicola salt marshes
- C North Brazil shelf and coastal zone
- D Gulf of Mexico deep sea
- E Weddell Sea (surface to bottom)





### Summary

Simple and robust method

PPL extracts >60% of coastal and >40% of deep-sea DOC

PPL retains a major fraction of N-containing compounds

Complete desalting of the sample NMR Ultra high resolution MS Various HPLC- and GC-MS-MS methods Fractionation of samples

Autonomous extraction with pumps from ship or on moorings







I urgently propose a workshop to decide on extraction methods for DOM

Thank you

**Caeté Estuary (Brazil)** 







### **Concentration of total amino acids**



### **Extraction efficiencies for the isolation of SPE-DOM**

using different sorbents





### **Concentration of amino acids**

